Integration of CRYSTALS-Dilithium into the XRP
Ledger

Ripple’s XRP Ledger is fundamental for securing
blockchain transactions efficiently. However, the rise of quan-
tum computing threatens the classical cryptographic algo-
rithms the XRPL relies on, such as secp256k1 and ed25519-
donna, for securing transactions and validating digital signa-
tures. Shor’s and Grover’s algorithms can break the security
of these algorithms using quantum computers. Hence, we are
proposing the integration of the PQC algorithm: CRYSTALS-
Dilithium, alongside existing classical algorithms. This re-
quires modifications to the XRPL protocol, key management
infrastructure, core functions etc. and each crucial change that
we have made is described in this report. This documentation
consists of a short yet technical summary of how we inte-
grated post quantum cryptographic algorithm “CRYSTALS-
Dilithium” into the XRP Ledger. The updated code repository
with the PQC updates can be found here.

I. SOURCE OF DILITHIUM

We sourced Dilithium from the Dilithium’s official repos-
itory. Like all other external algorithms, we placed it in rip-
pled/external directory. We have madhe some internal changes
to the Dilithium codebase to match the functionality with
existing functions within rippled.

In the rippled codebase (rip-
pled/xrpld/protocol/SecretKey.cpp), which consists of all
the core functions for cryptographic operations, there exists a
function derivePublicKey() which derives a public key from
a secret key. This was possible with secp256k1 or ed25519-
donna because they all follow Elliptic Curve Cryptography
(ECC). However, as Dilithium is a PQC algorithm that
relies on lattice-based cryptography, it is not possible to
retrieve the public key from the secret key. To address
this situation, we came up with an idea to create a new
function: crypto_keypair_seed() that will generate a key pair
deterministically based on the seed provided. So, we just
need to store the seed to generate/derive the public key.

The crypto_sign_keypair function generates a public and
private key pair using internal randomness, making it suitable
for scenarios requiring non-deterministic key generation. This
was the original function in the repository. In contrast, the
crypto_keypair_seed() function deterministically derives the
same key pair from a given seed, enabling repeatable key
generation. This is the new function created. While the former
is ideal for generating random key pairs, the latter provides
flexibility for scenarios requiring key regeneration from a
known seed. For the use case in the XRP Ledger, the second

function is very relevant, as we can use it for deterministic as
well as non-deterministic key parr generation.

II. CHANGES TO XRP LEDGER’S CODEBASE

The main changes we have made are primarily in the proto-
col directory, which includes SecretKey.cpp and PublicKey.cpp
files, along with the ancillary changes.

SecretKey.cpp

Destructor: The original implementation securely erased
a fixed-size buffer (32 bytes). The modified version supports
dynamically allocated buffers (e.g., 32 bytes for Secp256kl,
2528 bytes for Dilithium) using std::vector, ensuring proper
memory management and secure erasure.

generateKeyPair(): Support for Dilithium was added
alongside Secp256k1 and Ed25519. For Dilithium, the secret
key is generated using generateSecretKey(), and the public key
is derived using an updated derivePublicKey() function that
accepts a seed.

randomKeyPair(): The original version supported only
Ed25519. The modified version explicitly supports Secp256k1,
Ed25519, and Dilithium, with tailored logic for each key type
to ensure compatibility.

generateSecretKey(): Support for Dilithium was added.
The function now uses crypto_keypair_seed() for determinis-
tic key generation. Error handling was extended to include
std::runtime_error for Dilithium failures, and secure erasure
was implemented for all temporary buffers.

derivePublicKey(): The original version supported
Secp256k1 and Ed25519. The modified version adds support
for Dilithium by introducing an overload that uses pgcrys-
tals_dilithium2_ref_keypair_seed() to derive the public key
deterministically.

randomSecretKey(): The original function was generic
and did not differentiate between key types. The modified
version introduces separate functions for Secp256k1, Ed25519,
and Dilithium, each tailored to the specific requirements of the
respective algorithm.

sign(): Support for Dilithium was added. The function now
handles larger signature sizes (e.g., 2420 bytes for Dilithium)
and uses crypto_sign_signature() for signing. Error handling
was extended to ensure compatibility with all supported key
types.

SecretKey.h: The buffer representation was changed from
a fixed-size array to a dynamically sized std::vector, enabling
support for variable key sizes. Constructors and comparison
operators were updated to handle dynamic buffers, and hex-
adecimal conversion was adapted accordingly.


https://github.com/Xtinc-T/rippled-upstream/tree/my-feature-branch-dilithium
https://github.com/pq-crystals/dilithium
https://github.com/pq-crystals/dilithium
https://github.com/Xtinc-T/rippled-upstream/tree/my-feature-branch-dilithium/src/libxrpl/protocol
https://github.com/Xtinc-T/rippled-upstream/tree/my-feature-branch-dilithium/src/libxrpl/protocol

PublicKey.cpp

Key Type Support The original implementation supported
only Secp256kl and Ed25519 for public key construction,
verification, and digest verification. The modified version adds
support for Dilithium, including:

o Handling Dilithium public keys in the PublicKey con-
structor with sizes up to CRYPTO_PUBLICKEYBYTES
(1312).

¢ Detecting Dilithium public keys in publicKeyType based
on their size.

o Implementing signature verification for Dilithium in ver-
ifyDigest() and verify() using crypto_sign_verify().

PublicKey Constructor The original constructor assumed a
fixed public key size of 33 bytes for Secp256k1 and Ed25519.
The modified version dynamically determines the public key
size based on the key type:

e 33 bytes for Secp256kl and Ed25519.

e 1312 bytes for Dilithium.
The buffer is resized dynamically to match the key size.

Verification Functions verifyDigest(): The original func-
tion supported Secp256k1 and Ed25519. The modified version
adds Dilithium support using crypto_sign_verify() for digest
verification.

verify(): The original function verified messages for
Secp256k1l and Ed25519. The modified version includes
Dilithium message verification using crypto_sign_verify(), en-
suring compatibility with larger signatures.

Error Handling Error handling was extended to include
Dilithium, ensuring proper validation of larger key sizes and
signatures in all relevant functions.

Ancillary Changes and Future Work
Build System Updates

o CMakeLists.txt: Updated to include build commands for
Dilithium, similar to Secp256k1 and Ed25519.

o Conanfile: Modified to link libraries required for
Dilithium, such as OpenSSL.

Canonicality and Key Parsing Canonicality checks and
key parsing for Dilithium are not yet implemented due to the
larger key sizes. These features will be addressed in future
updates as needed.

A. Modifications to the test cases

To test the functionality of Dilithium, we adhered to a
consistent coding standard across all applicable test cases.
The test cases have been primarily divided into three types;
Class A (least modifications required), Class B (extensive
modifications required) and Class C (newly created test case).

III. TEST CASE SUMMARIES AND PERFORMANCE
ANALYSIS
Class A: InnerFormatSerializer_test

Original Implementation: This test validates the serial-
ization and deserialization of Signer objects in multi-signing
scenarios using secp256kl. Key steps include:

o Creating a transaction with an account ID and an empty
signing public key.

e Generating a second key pair for multi-signing and
preparing multi-signing data.

o Testing well-formed Signer objects for successful serial-
ization and malformed objects for rejection.

Modified Implementation: InnerObjectFormatsSerial-
izer_dilithium_test: This test extends support to Dilithium,
ensuring robustness in the multi-signing framework. Key
changes include:

o Generating Dilithium key pairs for signing transactions.

o Ensuring serialization logic handles larger key and sig-
nature sizes.

« Validating well-formed and malformed Signer objects for
Dilithium.

Class B: NegativeUNLVotelnternal_test

Original Implementation: This test validates the creation
and processing of UNLModify transactions using secp256k1.
Key steps include:

o Generating secp256k1 key pairs for validators.
o Verifying that transactions are correctly added to the
transaction set.

Modified Implementation: The test now supports
Dilithium, ensuring compatibility with larger key sizes. Key
changes include:

o Replacing secp256kl with Dilithium for validator key

generation.

o Using randomSeed() and randomDilithiumSecretKey() for

deterministic key pair generation.

o Verifying that Dilithium-based UNLModify transactions

are processed seamlessly.

Class C: SecretKeyFunctions_test

This test suite validates cryptographic key generation, sign-
ing, and transaction processing for secp256kli, ed25519, and
Dilithium. Key highlights include:

« Key Generation: Confirms that secret and public keys
adhere to expected sizes (e.g., 32 bytes for secp256kl,
2528 bytes for Dilithium).

o Signing: Validates that signatures are non-empty and
match expected sizes (e.g., 64 bytes for ed25519, 2420
bytes for Dilithium).

« Full Transaction Process: Ensures end-to-end function-
ality for key generation, signing, and verification across
all key types.

o Deterministic Key Pair Generation: Confirms that
Dilithium key pairs derived from the same seed are
consistent.

Performance and Throughput Comparisons

Performance Analysis: Two text files are also included
in the repository called “diff list.txt” and “diff_changes.txt”
which contain the list of files modified and the exact changes
made respectively.



o Key Generation + Public Key Derivation: Dilithium
exhibits higher latency due to larger key sizes.

o Key Pair Generation + Signing: Dilithium shows sig-
nificantly higher latency compared to secp256kl and
ed25519.

o Full Transaction Process: Dilithium’s latency is the
highest, reflecting the computational cost of post-quantum
cryptography.

IV. UNRESOLVED ASPECTS OF PQC INTEGRATION

While significant progress has been made in integrating
CRYSTALS-Dilithium into the codebase, certain aspects re-
main unclear due to the lack of specific requirements beyond
cryptographic operations. These unresolved areas require fur-
ther clarification and potential adjustments as the integration
evolves.

1. Account Key Type for Dilithium

Current Status: It is unclear whether Dilithium should be
introduced as a key type for account creation or limited to key
pair generation, message signing, and signature verification.
Keytype Dilithium has been added for the supporting keytypes
for creation of accounts along with Dilithium.

Considerations:

o If Dilithium is used for account creation, additional
changes to account management and validation logic may
be needed.

o If limited to cryptographic operations, the existing ac-
count creation process can remain unchanged, with
Dilithium used only for signing and verification.

o A new logic for account handling may need to be created
if the logic for key operations does not work. This is not
present even in the pq-CRYSTALS codebase.

2. ParseBase58 and Canonicality

Current Status: The functionality for parseBase58 and
canonicality checks has not been modified for Dilithium. These
features remain untouched and are not recommended for use
with Dilithium at this stage.

Reasoning: The original pqg-CRYSTALS codebase does not
currently support these functionalities. Implementing them
without proper support could lead to inconsistencies or errors.

V. CONCLUSION

While Dilithium demonstrates higher latency and lower
throughput, it provides quantum resistance, making it a critical
addition for post-quantum security. The tests confirm that
the integration of Dilithium maintains the robustness and
consistency of the cryptographic framework. Future updates
will focus on simplifying the build process and adding missing
functionalities, such as canonicality checks and key parsing,
as they become available.



	Source of Dilithium
	Changes to XRP Ledger's codebase
	Modifications to the test cases

	Test Case Summaries and Performance Analysis
	Unresolved Aspects of PQC Integration
	Conclusion

