
Integration of Zero-Knowledge Proofs into the XRPL

This document presents the design, implementation, and evaluation of a framework for
incorporating Zero-Knowledge Proofs (ZKPs) into the XRP Ledger (XRPL). We propose
a novel approach that enables confidential transactions without sacrificing the ledger’s
performance or consensus guarantees. The implementation demonstrates the feasibility of
ZKP integration, and the experimental results show that the proposed approach achieves
strong privacy guarantees with minimal overhead. This work lays the foundation for
privacy-enhanced transactions on the XRPL and provides insights for future research
in scalable, privacy-preserving distributed ledgers. This is an informal report explaining
the everything from adding libsnark (ZKP library) to evaluating results performed on the
unit tests in the rippled code base. Here is the github link to the repository : Rippled zkp
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1 Overview of XRPL Architecture

The XRP Ledger (XRPL) is a decentralized blockchain that employs the Ripple Protocol
Consensus Algorithm (RPCA) to validate transactions. It supports fast, low-cost pay-
ments, tokenization, and Decentralized Exchange (DEX) functionalities. Transactions
are pseudonymous and transparent, with all account balances, transaction histories, and
smart contract interactions immutably recorded on the public ledger. While this architec-
ture ensures auditability and security, it lacks mechanisms to protect sensitive financial
data, such as transaction amounts or participant identities.

The inherent transparency of XRPL poses challenges for enterprises and institutions
that require confidentiality in financial transactions. Publicly visible transaction details
can expose patterns, counterparties, and suppliers, potentially revealing sensitive business
information.

2 Libsnark Integration

We have used a well-known library called Libsnark, which provides a zkSNARK imple-
mentation - a cryptographic method for proving/verifying in zero knowledge the integrity
of computations.

2.1 Dependencies

The libsnark library relies on the following:

• C++ build environment

• CMake build infrastructure

• GMP for certain bit-integer arithmetic

• libprocps for reporting memory usage

• Fetched and compiled via Git submodules:

– libff for finite fields and elliptic curves

– libfqfft for fast polynomial evaluation and interpolation in various finite
domains

– Google Test (GTest) for unit tests

– ate-pairing for the BN128 elliptic curve

– xbyak just-in-time assembler, for the BN128 elliptic curve

– Subset of SUPERCOP for crypto primitives needed by ADSNARK

Libsnark gives users the freedom to define their own circuits as well as implement a
zkSNARK for R1CS secure in the generic group model (Groth16). It also gives users the
choice of elliptic curves like Edwards (ed25519), bn128 (default), alt bn128, MNT4, and
MNT6. There are also some custom options mentioned in the CMakeLists.txt according
to a user’s preference or OS.
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3 Migrating Libsnark from C++14 to C++20

The goal was to integrate the libsnark cryptographic library into the rippled codebase,
ensuring full compatibility with the C++20 standard. The original libsnark codebase
was written for C++11/C++14, and several deprecated or removed features in C++17
and C++20 caused build failures. Additionally, platform-specific issues (notably on Apple
Silicon/arm64) were encountered and addressed.

3.1 CMake and Build System Updates

• Updated the main project’s CMakeLists.txt to set CMAKE CXX STANDARD 20 and
CMAKE CXX STANDARD REQUIRED ON.

• Ensured that all Conan profiles and CMake toolchains used compiler.cppstd=20

and compiler.libcxx=libc++ (on macOS).

• For dependencies like gRPC that were not C++20 compatible, forced their build
with compiler.cppstd=14 via Conan settings.

3.2 Deprecated/Removed STL Features

• std::bind1st and std::bind2nd:

– These were removed in C++17.

– Replaced all usages with equivalent lambda expressions or std::bind where
appropriate.

– Example replacement:

// Old (C++14): std:: bind1st(std::plus <int >(), 10);

// New (C++20): [&]( int x) { return 10 + x; }

• std::random shuffle:

– Removed in C++17.

– Replaced with std::shuffle and a random number generator.

– Example replacement:

// Old: std:: random_shuffle(vec.begin(), vec.end ());

// New: std:: shuffle(vec.begin(), vec.end(),

std:: mt19937{std:: random_device {}()});

3.3 Library and Dependency Compatibility

• Ensured all dependencies (libff, libfqfft, GMP, OpenSSL, Abseil, gRPC) were
built with the correct C++ standard and architecture flags.

• For OpenSSL, migrated to OpenSSL 3.x to ensure symbol compatibility with mod-
ern dependencies.

• For Abseil, disabled SSE4.1 optimizations on ARM by setting absl enable sse4 1=Off

in Conan options.
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3.4 Platform-Specific Fixes

• On MacOS/Apple Silicon (although not recommended for the time being), patched
the build to avoid linking x86 64-only code and to use only portable C implemen-
tations where necessary.

• On Linux/x86 64, confirmed that all SIMD and assembly optimizations could be
enabled for maximum performance.

4 Changes to Rippled (XRPL)

To enable shielded, privacy-preserving, and ZKP-based operations, we extended the Rip-
pled codebase with a modular zero-knowledge protocol layer. Our design philosophy was
to minimize disruption to the existing codebase, leveraging Rippled’s robust primitives
and transaction processing, while encapsulating all ZKP logic in a dedicated protocol
subdirectory. The new logic draws inspiration from Zcash’s architecture but is tailored
specifically for XRPL’s requirements.

4.1 Core Components of the ZKP System

The ZKP system introduces several key components to the Rippled codebase, each de-
signed to support shielded transactions efficiently (Present in src/libxrpl/zkp):

4.1.1 Incremental Merkle Tree (IncrementalMerkleTree.h)

At the heart of the shielded pool is the IncrementalMerkleTree, an efficient, append-only
Merkle tree with the following features:

• Efficient Updates: Supports O(log n) updates and batch appends.

• Persistent Storage: Allows serialization and deserialization for robust recovery.

• Key Methods:

– append, appendBatch, precomputeNodes: Efficient leaf insertion.

– authPath, verify: Generate and verify authentication paths.

The associated MerkleWitness struct encapsulates:

• A leaf, its authentication path, position, and root.

• Methods for verification and serialization, enabling succinct proofs of inclusion.

4.1.2 Shielded Value Transfers (Note.h)

Shielded value transfers are modeled by the Note structure, which includes:

• Core Attributes: Value, randomness, unique identifier, and paying key.

• Key Methods:

– commitment, nullifier: Compute note commitment and nullifier using cryp-
tographic hash functions.
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– toBits, fromBits: Convert notes to and from bit representations.

– random, createRandom: Generate random notes.

• AddressKeyPair Struct: Represents a shielded address with:

– Spending and viewing keys.

– Methods for key derivation (derivePublicKey, deriveViewingKey) and note
spending checks (canSpend).

4.2 Zero-Knowledge Proofs (ZKProver.h)

The ZkProver class encapsulates all ZKP generation and verification logic:

• Circuit Management:

– initialize: Initialize circuits for deposit and withdrawal operations.

– generateKeys, saveKeys, loadKeys: Manage cryptographic keys.

• Proof Generation and Verification:

– createDepositProof, createWithdrawalProof: Generate proofs for deposit
and withdrawal operations.

– verifyDepositProof, verifyWithdrawalProof, verifyProof: Unified proof
verification interface.

• Utility Functions:

– uint256ToBits, bitsToUint256: Field and bit conversions.

– generateRandomUint256: Generate random values for cryptographic opera-
tions.

4.3 New Transaction Types for Shielded Operations

To support shielded transactions, we introduced new transaction types, each extending
the Transactor base class:

4.3.1 ZkDeposit (ZkDeposit.h)

Handles the deposit flow:

• Validation:

– preflight: Checks required fields and proof size.

– preclaim: Verifies cryptographic proofs and commitments.

• Execution:

– doApply: Transfers XRP to the shielded pool and records the commitment.

• Helpers:

– createDepositProof: Client-side proof generation.

– Internal methods for pool management and proof verification.
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4.3.2 ZkWithdraw (ZkWithdraw.h)

Handles the withdrawal flow:

• Validation:

– preflight, preclaim: Ensure valid proofs, unique nullifiers, and valid Merkle
roots.

• Execution:

– doApply: Updates the shielded pool, prevents double-spending, and transfers
XRP to the destination account.

• Helpers:

– createWithdrawalProof: Proof generation for withdrawals.

4.3.3 ZkPayment (ZkPayment.h)

Supports shielded payments:

• Validation: preflight, preclaim.

• Execution: doApply.

• Helper: verify zk proof for payment proof verification.

4.4 Ledger Integration

The STZKProof class (STZKProof.h) extends STBlob to represent serialized ZK proofs
within XRPL transactions. This enables:

• Embedding ZKP objects directly in the ledger.

• Compatibility with the new shielded transaction types.

The class provides constructors for various initialization scenarios and overrides type and
textual representation methods for seamless protocol integration.

These changes to Rippled introduce a modular and efficient zero-knowledge protocol
layer, enabling shielded transactions. By leveraging XRPL’s robust primitives and en-
capsulating ZKP logic in dedicated modules, the system achieves privacy, scalability, and
compatibility with minimal disruption to the existing codebase.

5 Improvements to the Current Approach

The original implementation of libsnark utilized a standard Merkle tree for managing
commitments and generating proofs. Even thought this approach was functional, it had
signification performance limitations due to O(n) complexity of appending leaves and
generating authentication paths. These inefficiencies became a bottleneck, particularly
for large-scale applications requiring frequent updates and proof generation.

To address these challenges, we replaced the standard Merkle tree with an Incremen-
tal Merkle Tree (IMT). The IMT leverages O(log n) complexity for updates and proof
generation, significantly improving performance. Key optimisations include:
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• Efficient Updates: The IMT supports batch appends and precomputes nodes,
reducing the overhead of frequent updates.

• Persistent Storage: Serialization and deserialization capabilities ensure robust
recovery and state management.

• Optimized Authentication Paths: Cached sibling nodes enable faster genera-
tion of authentication paths, further enhancing efficiency.

In addition to the structural improvements, we optimized the zero-knowledge proof
generation process by reducing the number of constraints in the arithmetic circuits. The
primary performance gain came form eliminating redundant field element conversions for
cryptographic values by bypassing the expensive packing/unpacking gadgets for values
like note rho, note r, note a pk, a sk and vcm r. Instead, storing these 256 bit values
directly as bit arrays without intermediate field element representations. This change
alone removed approximately 1280 packing constraints (5 gadgets x 256 bits each).

These optimizations reduced the proof generation time from approximately 40 seconds
to around 25 seconds and reducing memory allocation overheads, a significant improve-
ment that enhances the practicality of ZKP-based transactions in real-world applications.
The combination of the IMT and streamlined constraints ensures a scalable, efficient, and
high-performance solution tailored to XRPL’s requirements.

Additionally, the current implementation introduces proper empty hash handling with
the computeEmptyHash() function that generates deterministic, level specific empty node
values instead of using all zero hashes, which are a possible security vulnerability.

6 Testing

The integration of Zero-Knowledge Proofs (ZKPs) into the XRP Ledger (XRPL) was
extensively tested to ensure correctness, performance, and compatibility with the existing
system. This section describes the key test cases and their results, focusing on the
functionality of the ZKP prover, ZKP transactions, and the performance comparison
between standard Merkle trees and Incremental Merkle Trees (IMTs).

6.1 ZKP Prover Testing

The ZKProver test suite was designed to validate the core functionality of the ZKP
prover, including key generation, note creation, proof generation, and verification. The
tests also evaluated edge cases, privacy guarantees, and the prevention of double-spending.
The results confirmed the correctness and robustness of the ZKP prover, with all tests
passing successfully. Below are the key components of the test suite:

• Key Generation and Persistence: The ZKP prover’s ability to generate and per-
sist cryptographic keys was tested. Keys were generated using the generateKeys()
function, and their persistence was validated by saving and reloading them from
a specified location. This ensures that the keys can be securely stored and reused
across sessions.

• Note Creation and Commitment: The creation of ZKP notes, which represent
shielded transactions, was tested using both random and manual methods. Each
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note includes parameters such as value, randomness (ρ), and public key (apk). The
correctness of note commitments, which are cryptographic hashes of the note pa-
rameters, was verified. Additionally, nullifiers, which prevent double-spending, were
computed and validated.

• Proof Generation and Verification: The test suite evaluated the generation
and verification of deposit and withdrawal proofs. Deposit proofs ensure that a
note is correctly added to the shielded pool, while withdrawal proofs validate the
spending of a note. The tests included:

– Deposit Proofs: Random notes were created, and their deposit proofs were
generated and verified. Debugging information, such as Merkle paths and
nullifiers, was printed to ensure correctness.

– Withdrawal Proofs: Notes were added to an IMT, and withdrawal proofs
were generated using the authentication path and Merkle root. The proofs
were verified to ensure that the note was valid and not double-spent.

• Edge Cases: The test suite included edge cases such as zero-value notes, large-
value notes, and maximum allowable values. Privacy guarantees were validated
by ensuring that different notes produced unique nullifiers, and the same note al-
ways produced the same nullifier. This prevents double-spending while maintaining
anonymity.

• Complete Workflow Testing: A complete ZKP workflow was tested, simulating
a real-world scenario:

1. A user (e.g., Alice) creates a shielded note and generates a deposit proof.

2. The note is added to the IMT, along with other dummy notes for anonymity.

3. The user generates a withdrawal proof to spend the note, ensuring that the
proof is valid and the nullifier is unique.

4. Privacy was validated by ensuring that different notes produced different nul-
lifiers, and double-spending was prevented by rejecting duplicate nullifiers.

6.2 ZKP Transaction Testing

The ZKPTransaction test suite was designed to evaluate the performance of ZKP-based
transactions, including cryptographic operations, ZKP proof generation, and Merkle tree
operations. The suite also compared the performance of different cryptographic schemes
(e.g., Secp256k1, Ed25519) and their integration with ZKP proofs. Below are the key
components of the test suite:

• Standalone Cryptographic Performance: The performance of standalone cryp-
tographic operations was tested for both Secp256k1 and Ed25519 schemes. Each
test measured the time taken for key generation, signing, and verification over mul-
tiple iterations. The results showed that Ed25519 was faster than Secp256k1 for
signing and verification, while key generation times were comparable.
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• ZKP Proof Performance: The performance of ZKP deposit proofs was eval-
uated by generating and verifying proofs for multiple transactions. The results
demonstrated that ZKP proof generation dominated the overall transaction time,
accounting for 80-95% of the total time. Throughput was measured in transactions
per second (tx/s), highlighting the scalability of the ZKP system.

• Combined Cryptographic and ZKP Performance: The suite tested the inte-
gration of cryptographic schemes with ZKP proofs, simulating real-world transac-
tions. For example, a Secp256k1 signature was generated and verified alongside a
ZKP deposit proof. The results showed that the combined performance was primar-
ily constrained by the ZKP proof generation, with cryptographic operations adding
minimal overhead.

• Comprehensive Performance Comparison: A comprehensive performance com-
parison was conducted between Secp256k1, Ed25519, and ZKP-based transactions.
The results highlighted the following:

– Secp256k1: Moderate performance with balanced key generation, signing,
and verification times.

– Ed25519: Faster signing and verification compared to Secp256k1, making it
suitable for high-throughput applications.

– ZKP: Dominated by proof generation time, but essential for privacy-preserving
transactions.

• Merkle Tree Performance: The suite evaluated the performance of Merkle tree
operations, including insertion, authentication path generation, and verification.
Both incremental and regular Merkle trees were tested, with incremental trees
demonstrating superior performance due to their O(log n) complexity for updates
and proofs.

6.3 Standard Merkle Tree vs Incremental Merkle Tree

To evaluate the performance of the Incremental Merkle Tree (IMT) compared to a stan-
dard Merkle tree, a detailed performance comparison was conducted. The test focused
on three core operations: append, authentication path generation, and verification.

• Append Operation: The append operation measures the time taken to add a
new leaf to the tree. The IMT updates only the path from the leaf to the root,
leveraging cached nodes and frontier optimizations, resulting inO(log n) complexity.
In contrast, the standard Merkle tree rebuilds the entire tree from scratch, leading
to O(n) complexity. The results showed that the IMT was significantly faster, with
speedups ranging from 200x for small trees (depth 8) to 250,000x for large trees
(depth 20).

• Authentication Path Generation: Authentication path generation involves cre-
ating a cryptographic proof of leaf membership in the tree. The IMT retrieves
cached sibling nodes, achieving O(log n) complexity, while the standard Merkle
tree reconstructs the tree levels on demand, resulting in O(n) complexity. The
IMT consistently outperformed the standard implementation, with speedups of ap-
proximately 1.2x to 1.3x across all tested depths.
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• Verification Operation:Verification checks whether an authentication path proves
the membership of a leaf in the tree. Both implementations use the same algorithm
for verification, resulting in similar performance (O(log n)). Minor differences were
observed due to cache locality effects, but the overall performance was nearly iden-
tical.

7 Results

The performance of Merkle tree operations was evaluated using both Incremental Merkle
Trees (IMT) and standard Merkle trees. The results are presented in two graphs: a bar
chart showing the breakdown of transaction time by process and a line chart illustrating
the overall trend of transaction time with increasing tree depth.

Figure 1: Transaction Process by Depth and Tree type

Figure 1 presents a bar chart that breaks down the transaction time into 4 key pro-
cesses: proof generation, append, authentication path generation, and proof verification.
The results are shown for both IMTs and standard Merkle trees across various tree depths,
ranging from 24 (16 leaves) to 228 (268,435,456 leaves).

• IMT Performance: The IMT consistently maintained a low and stable trans-
action time across all tree depths. The append operation, which benefits from
the IMT’s O(log n) complexity, was particularly efficient, with a constant time of
approximately 25 seconds for smaller depths and a slight increase for larger depths.

• Standard Merkle Tree Performance: The standard Merkle tree exhibited sig-
nificantly higher transaction times, especially for larger tree depths. The append
operation’s O(n) complexity caused a dramatic increase in transaction time, reach-
ing over 120 seconds for a tree depth of 228.

• Process Breakdown: For both tree types, proof generation dominated the trans-
action time, followed by authentication path generation and verification. However,
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the IMT’s optimizations resulted in a much smaller contribution from proof gener-
ation compared to the standard Merkle tree.

Figure 2: Transaction Process Trend by Depth (IMT vs. Regular)

Figure 2 illustrates the overall trend of transaction time as a function of tree depth.
The line chart highlights the scalability of the IMT compared to the standard Merkle
tree.

• IMT Scalability: The IMT demonstrated excellent scalability, with transaction
times increasing only slightly as the tree depth grew. This confirms the efficiency
of the IMT’s O(log n) operations for append, authentication path generation, and
verification.

• Standard Merkle Tree Scalability: The standard Merkle tree showed poor
scalability, with transaction times increasing exponentially as the tree depth grew.
This is attributed to the O(n) complexity of the append operation, which becomes
a bottleneck for large tree depths.

• Performance Gap: The performance gap between the IMT and the standard
Merkle tree widened significantly for larger tree depths. At a depth of 228, the IMT’s
transaction time was approximately 60 seconds, compared to over 120 seconds for
the standard Merkle tree.

The results demonstrate the superior performance and scalability of the Incremental
Merkle Tree compared to the standard Merkle tree. The IMT’s O(log n) complexity for
append and proof generation operations ensures consistent performance even for large
tree depths, making it a suitable choice for high-performance applications. In contrast,
the standard Merkle tree’s O(n) complexity leads to exponential growth in transaction
time, rendering it impractical for large-scale systems.
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*Considerations About the Implementation*

Currently, the implementation is only recommended to run on Linux as it is in the
ready-to-run state for that OS. We have tried to add conditions in the build commands
to auto-detect the OS and build the respective packages accordingly. However, some
packages do not sync well together with MacOS and Windows, as it is very difficult to
find a combination of package versions that balance the OS (MacOS or Windows), rippled,
and libsnark (C++20).

Even thought the tests were carried out by a superfast computer (Dell Alienware 18
with highest specs), it was still not enough to conduct tests for tree sizes 232, 240 and so
on.

We have integrated ZKPs as a different transaction type having different data struc-
tures (Incremental Merkle Tree) instead of the native SHAMap of XRPL. It was unsure
so we went with the safe way of creating a new transaction type using ZKPs to ensure
backward compatibility.

It is recommended to have openssl@3 installed in the system, as using 1.1.1u would
lead to segmentation faults.
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